
www.manaraa.com

CrawLogo: empowering end-users to program the Web

Kevin McGee and Johan Nilsson

Department of Computer and Information Science,
Linköping University

581 83 Linköping, Sweden

kevmc@ida.liu.se
x03johni@ida.liu.se

Abstract

In order to create Web-enabled applications that

programmatically use the Web as an expressive
medium, the current choice is largely between
conventional programming languages that are
difficult to learn and use – and less expressive
alternatives. In order to address this issue, we have
been developing CrawLogo, a Logo-inspired
programming environment in which Web-elements
are programmable, body-syntonic “Crawltures” that
exist within a 5-dimensional Crawlture Geometry. In
this paper we briefly summarize related work,
describe the CrawLogo environment, some sample
applications, and the initial response of end-user
programmers who have successfully used it to build
Web-enabled applications. We conclude with a
discussion of some insights into the larger question of
empowering end-user programming of the Web, the
development of a Crawlture Geometry, and future
research challenges.

1 Introduction

The ability for non-programmers to build
innovative Web-enabled applications is still quite
limited.

There are, of course, many end-user systems that
help people program Web sites, Web-enabled games,
and other applications that use the Web as an
infrastructure for communication and coordination.
However, for the most part, when people speak about
“Web-based applications”, they usually means such
things as those that primarily use the Web as an

extended database to be searched and catalogued, as a
front-end display medium, or as a delivery-mechanism
for applications, updates, and the like.

In this paper the term Web-enabled application
refers to applications that not only have a Web
interface – they also use aspects of the Web as
programmable data-types to retrieve, manipulate, and
transmit Web-content. The aim here is not to make it
easier for end-users to build typical Web-sites,
networked games, or search engines (although such
goals are certainly worthy). Rather, it is to enable end-
users to use the content, mechanisms, protocols, and
very connectivity of the Web as an expressive,
programmable medium – much as a painter uses oils,
brushes, and canvas as such a medium. Said another
way, the interest is to empower end-users to program
and invent Web-enabled applications that they could
imagine and realize if the threshold of programming
expertise was not set so high.

Interesting examples of such Web-enabled
applications include “collaborative browsing” (Let’s
Browse [14]), collaborative collage-making
(CollageMachine [12]; group-editing and publishing
(Web logs (“blogs”), Wikis); file-sharing (Napster,
Friendster); chat, IM, and various kinds of
coordination software; Web-enabled games (MUDs,
MMORPGs, interactive story-telling), art, and
entertainment. These are often the kinds of Web-
enabled applications that spark the imaginations of
users – and also suggest interesting variations that they
would like to create.

www.manaraa.com

2 Survey

In general, few existing end-user tools for the
creation of Web-enabled applications provide an
expressive programming language in combination with
a meaningful metaphor and ease-of-use. Available
tools for programming Web-enabled applications are
either too difficult for end-users or are simply not
expressive enough to support the development of
applications of much complexity or innovation.

Since the requirements of end-user programming
environments differ widely depending on the users and
their purposes, there are a number of approaches to
end-user programming that are being explored,
including: making the programming language more
like natural spoken or written languages [15]; the
creation of “scripting” or special-purpose languages
(for arguments and discussion, see [21, 8]); the
development of various interface metaphors [4, 19,
24]; reconceiving the notion of a “programming
language” in various ways (visual programming [10],
programming by physical manipulation [17] and
hybrid approaches [6]); and “adding intelligence” to
the programming tools (“programming by
demonstration” [7, 13], agents [24], and the like). For a
more extensive survey of languages for non-expert
programmers, see [11].

The most common examples of Web-oriented end-
user programming systems involve simplifying the
development of different kinds of Web sites, from
“standard” ones to Wikis and blogs. Of the systems
that specifically support end-user programming of
Web-enable applications, there are a few for
customizing Web crawlers or newsreaders
(FeedDemon); some for authoring and publishing to
the Web (digital libraries [23]); tools to support
network-based tasks such as messaging and online
collaboration (ToonTalk [10], NetLogo [25]); and
game construction kits [3,5].

3 Research Problem

The success of many different end-user
programming systems to date is encouraging – and the
dearth of such systems for creating Web-enabled
applications is both an opportunity and a challenge.
The research problem, then, is to develop a system that
empowers end-users to build interesting Web-enabled
applications similar to those they already see – such as
collaborative collage-makers – or even to
spontaneously invent their own.

4 Method

The approach taken to address this problem
involved the development of CrawLogo, a Logo-
inspired programming environment in which Web-
elements are “Crawltures” – and in which the body-
syntonic metaphor of Turtle Geometry is extended to a
(Web) Crawler Geometry. In the sections below, the
CrawLogo environment and the initial version of
Crawlture Geometry is described – as are some sample
applications and the initial response of end-user
programmers who successfully used CrawLogo to
build Web-enabled applications. (For a more extensive
treatment, see [18].)

In order to better contextualize the contribution of
CrawLogo, a brief summary of Logo and Turtle
Geometry is now provided.

4.1 CrawLogo: Turtle Ancestry

Two of the major end-user programming
innovations introduced in Logo [19] included the
design of a special-purpose language with intuitive
syntax and primitives (a variation on Lisp) – and the
introduction of the Turtle as a programming interface-
metaphor (or “object to think with”). Both of these
strategies have become standard in systems intended to
empower end-user programming. However, the notion
of an “object to think with” has not been as widely
elaborated upon. To be sure, there are many examples
of end-user systems where agents are used as an
interface metaphor. But the innovation of the Logo
Turtle was more profound: it was part of a
reconceptualization of geometry to make it more
syntonic, or resonant, with the epistemology and
interests of children. That is, “Turtle Geometry” was
created as a bridge between the interests of children
(drawing various kinds of images), the computer as a
formal medium of expression, and formal geometry (as
an “adult” representation that is particularly
empowering for the creation and manipulation of
graphics).

One of the consequences of Logo’s design was that
young children were able to engage in programming –
indeed, it was clear that the change in representation
(the “domain redesign”, in the words of Papert)
empowered young children to think, design, and
construct in ways that were previously thought only
possible by older children (the creation of systems
based on formal rules and operations, etc.). Another
consequence is that children often spontaneously

www.manaraa.com

“know what to do” when they are introduced to the
Logo Turtle; this “knowing what to do” means more
than “understanding how to control the Turtle” – it
also involves what Eleanor Duckworth calls “the
having of wonderful ideas.” That is, the domain
redesign empowers children to conceive of – and
execute – exciting projects that formerly might not
have been meaningful or possible.

A key design insight from the work on Turtle
Geometry was the importance of redesigning a domain
to leverage existing knowledge. The Turtle is
particularly syntonic or convivial in the sense that most
people have fairly well-developed “body knowledge”
that can be immediately leveraged in the new context
of “controlling a Turtle to make pictures.” These
insights have been explored in the development of
Logo-influenced systems for music [2], modeling
decentralized systems [20], and game design [3],
among many, many others; and, of course, Logo and
Turtle Geometry have had an impact on many other
aspects of end-user programming in general.

To conclude this review, in Turtle Geometry, the
programmer controls a Turtle via a programming
language. The Turtle commands (back, forward, turn-
left, turn-right) correspond to the programmer’s body-
knowledge about movement – and this syntonic
language enables a programmer to quickly create
complex geometric designs, drawings, or animations.
From the perspective of geometry, then, the Turtle
embodies a mathematical point – as well as additional
characteristics, such as heading, speed, age, and the
like.

Figure 1: A “Turtle trip”

As an example, consider the image of a “Turtle
trip.” This illustrates the result of starting with a
heading of 0 (north) – and then executing the
following commands: FORWARD 100, TURNRIGHT
90, FORWARD 100, TURNRIGHT 90 and finally
FORWARD 100.

4.2 CrawLogo: The Implementation

In the section below, aspects of the CrawLogo
implementation, language, and objects are described.

In general, applications are developed in the
CrawLogo environment by creating and managing
procedures and various objects such as Web browsers
and filters, using Logo-like syntax and semantics.
These applications can be local to one computer – or
distributed across two or more.

Figure 2: CrawLogo workspace

The core parts of the environment are the user

interface, the CrawLogo interpreter and a number of
programmable objects (see Figure 2). Users interact
with the tool via the command line or the editor – or by
direct manipulation of objects placed in the workspace.
The GUI in CrawLogo consists of a workspace where
the user can create and control various CrawLogo
objects. A programmer has access to all the commands
and primitives of CrawLogo from the command line or
the editor. As in other programming environments, the
command line is primarily intended for instantly
invoking procedures and shorter commands or series
of commands; this is useful for controlling and
manipulating CrawLogo objects “on the fly”, e.g.
during the runtime of an application (such as a game).
The editor is used to create and manage longer
procedures and consists of four parts – a procedure
editing frame, a list of existing procedures, a message
frame (where messages from other users and system
messages are displayed) and a panel with action
buttons for evaluating, executing, editing, saving and
loading procedures.

www.manaraa.com

CrawLogo Language. Similar to other versions of
Logo, CrawLogo contains a fairly standard set of
primitives (mathematics, symbols, control, graphics,
I/O, and the like). There are also custom primitives that
include support for threading, networking, and creating
and manipulating CrawLogo objects. The new
CrawLogo primitives were designed to extend the
CrawLogo metaphor to correspond to some of the task-
specific operations that programmers might want to
have their CrawLogo applications perform. For
example, starting a server that can be accessed by other
users does not require the programmer to know or use
details about socket handling and sending packages; it
is possible within the CrawLogo metaphor to quickly
get a server up and running and start interacting with
other users.

CrawLogo Objects. As traditional Logo has Turtle
objects, CrawLogo has Crawltures – objects that, in
addition to screen positions, headings, and the like,
also have a URI (“uniform resource locator”) location
in Web space. Crawltures can also potentially have
different sensors and effectors, allowing them to
respond to – and act upon – other Crawltures and I/O
data (display, audio, and the like). Thus, for example, a
Crawlture can be programmed to “click on” certain
kinds of hyperlinks – and “have them spawn as new
Crawltures.” There are a number of different
categories of Crawltures, including Web browsers
(which can retrieve and display Web pages); shapes
(most similar to the traditional Logo Turtle, these are
simple graphical objects – quadrangles and ellipses of
different sizes and colors – that can be instructed to
move on the screen and interact with other objects);
and filters (which can graphically modify other
Crawltures that they come across – blurring or
embossing them).

Crawlture Geometry. The “geometry” of Web
space presents a number of representational challenges
for CrawLogo. In particular, it is not clear to what
extent it is possible to have a fixed, absolute geometric
reference framework for a “space” made up of
“coordinates” that update dynamically relative to each
other. This is a longer-term research problem, and
there are a number of research projects to visualize and
represent the geometry of Web space (see [9] for a
survey of this work).

This initial version of Crawlture Geometry involves
a 5-dimensional, physical space. A Crawlture exists in
a position comprised of the X- and Y-coordinates of
the screen – as well as “something like” a three-
dimensional URI-space. The URI space is three-

dimensional in the following sense: the URI links
explicitly referenced on the page of the Crawlture’s
current URI location are mapped as a plane (X- and Y-
coordinates in URI-space) of discrete, Crawlture-
relative nodes – and the “absolute” directory/file-
structure space of the current URI location is
represented as a Z-axis in URI-space (with nodes
potentially “above” and “below” the Crawlture). One
way to visualize this is to think of the computer screen
as “looking down” on the “top surface” of a 3-
dimensional URI-space.

Figure 3: Conceptual model of a URI-space

Thus, body-relative Crawlture movement consists

of the traditional forward and back on the screen-
surface – as well as web-forward and web-back, which
move the Crawlture along the Web XY-plane.
Additionally, the Crawlture can move up and down,
where up is “towards” the programmer (from behind
the screen) along the Z-axis, and down is “away from”
the programmer (in the direction of the screen) along
the Z-axis.

The Web-coordinates are only “absolute” to the
extent that such coordinates actually exist in the
structure of Web URIs at the moment of code-
execution – and CrawLogo makes no assumptions
about the existence or the endurance of such
coordinates. Crawlture movement along any one of the
five Crawlture Geometry dimensions is disjoint from
movement in any other dimension.

When a Crawlture moves to a new location, it
automatically extracts all hyperlinks contained in the
URI page and maps them around itself as “exits” to

www.manaraa.com

other locations (see Figure 3). The “width” of each exit
is calculated by 360/n, where n is the number of
hyperlinks of the current URI. When there is at least
one exit, a Crawlture will always be facing a specific
one, and all exits have the same width. In some sense,
a URI coordinate can be thought of as a house, with
numerous doors (hyperlinks) to rooms (other URIs) on
different floors (directories and subdirectories). Telling
the Crawlture to move web-forward will take it to the
URI it is currently facing, and telling it to turn web-
right or web-left will direct it towards the URI position
it has generated. Note that the number of degrees of a
URI node is determined by the number of links the
URI has; arguments to web-right and web-left are
evaluated relative to the number of degrees in the
node.

For example, in Turtle Geometry, the calculation
for a Turtle that has a heading of 0 and turns right 90
is: (/ (modulo 90 360) 360) = 1/4 turn. In Crawlture
Geometry, the calculation for a Crawlture that has a
heading of 0 and turns right 90 (on a node of 20
degrees) is: (/ (modulo 90 20) 20) = 1/2 turn.

Moving web-forward (or web-back) takes a
Crawlture to a new node. In the case where the
Crawlture is on a node with no connecting nodes, the
only way for it to move is via web-up or web-down.

4.3 CrawLogo: Programming

Programming in CrawLogo is very similar to
programming in other Logo environments. The actual
syntax is similar and there are commands for making
and controlling Crawltures; there is support for
creating, applying, and saving complex procedures and
sub-procedures; and there are mechanisms for
managing different aspects of URI-space, network
activity, and connectivity. Additionally, there is an
initial implementation of a “recording” feature that
allows programmers to do things such as have a
Crawlture “run all night, looking for interesting things”
– and then “play back” some portion of its activity-
history.

4.4 CrawLogo: Sample Applications

A number of demonstration CrawLogo applications
have been developed; four are briefly described here.

 CrawLogo Pong. This is a version of the classic
Atari game in which players compete across the
network, and in which Crawltures are the “ball” and
“paddles” – and in which different state-conditions for

both the balls and paddles have unexpected
consequences for the players (such as changing the
speed, size, or direction of the ball – or modifying the
player’s ability to control the paddles).

Collaborative Browsing. This is an application in
which users can browse the Web together, show each
other interesting Web pages and chat about what they
see.

Image Slideshow. This is an application in which
someone can programmatically specify a Web-
generated slide-show.

“Guess Who?” This a Web-enabled multiplayer
guessing game in which Crawltures are programmed to
find other Crawltures with, say, pictures of rock-stars.
The pictures are then blurred (or otherwise disguised)
and players send either guesses or Crawltures to “de-
blur” the image a bit.

4.5 CrawLogo: Actual Use

To date, most of the CrawLogo research effort has
gone into the initial design and development of the
environment and the Crawlture Geometry. However,
there have been some informal meetings with end-
users who have tried the system. Participants were told
about the Logo Turtle, the idea behind CrawLogo, and
some examples of applications one could make with it.
They were then given access to CrawLogo and a short
manual of CrawLogo commands. The principle
developer was also present as they used the system,
answering any questions and providing ”system
feedback” in cases where it wasn’t available. For the
most part, the programming experience of the
participants was “a single introductory course a few
years ago”; none had ever developed a Web-enabled
(or networked based) application.

 In the discussions, participants were generally
enthusiastic about the idea of being able to quickly
create their own applications that might include the
ability to communicate and collaborate with others
over the network – as well as create applications that
made use of the Web itself as an expressive medium.
In the case of one pair of participants, after about five
minutes they “made contact” with each other over the
network and began spontaneously sending each other
Crawltures (Web-browsers, geometric shapes, and
actual procedures). They also quickly discovered that
they themselves continued to have control over
Crawltures they sent to other participants, and began to
make them do “interesting things” on each others’
screens. This quickly evolved into a collaborative

www.manaraa.com

browsing and playing situation. A couple of the
participants also spontaneously created their own
versions of some of the applications described above.

Participants were also presented with a specific
challenge: create a Web-crawler that would generate
an interesting slide-show by finding a URI that
matched some criteria, displaying it, waiting a certain
amount of time, and then finding another URI (based
on programmer-specified criteria). They all succeeded
quite easily in creating such an application.

The immediate impression of participants was that
not only did the CrawLogo environment empower
them to make interesting applications, but the actual
process of making the applications was fun.

One difficulty that became apparent was the lack of
a “visible heading” for certain kinds of Crawltures. A
WebCrawler browser window, for example, can have a
heading just like a traditional Turtle – and although
there is some indication of heading if the image is
upside-down, more subtle variations are not currently
represented visibly. This is something currently being
developed, but the absence made it difficult for
participants to create some of the effects they wanted.
Not surprisingly, the participants also found it difficult
to conceptualize certain aspects of Crawlture
Geometry. We discuss these issues in more detail
below.

5 Discussion

Empowering users to create and control Crawltures
that move along complex and unpredictable paths calls
for a meaningful and intuitive representation of such
movement – and the geometry of the space within
which such movement takes place.

This work is still in its early stages and there are
already a number of obvious research challenges
related to the CrawLogo language, the design of
Crawlture Geometry, and the visualizations of different
phenomena.

Syntonicity and Design of Primitives. Much of
the learnability of Logo’s Turtle Geometry lies in its
syntonicity – the possibility for a user to identify with
the Turtle and mentally (or physically) “play Turtle.”
Currently, the CrawLogo primitives fall into three
broad categories, depending on the degree to which
they can be said to be consistent with the Crawlture
metaphor: consistent with “playing Crawlture”
(commands such as forward, up, and the like);
consistent with “talking to the Crawlture” (commands
such as setcolor, setpower and setURL); and those that

are “outside the metaphor” (startserver and the like).
This raises an ongoing design issue about whether (and
how) to try and “force” certain programming activities
into a consistent metaphor.

In order to reduce complexity for the programmer,
the current implementation of CrawLogo does not
support a screen Z-dimension – nor various controls
for orientation (“pitch”, “yaw”, and the like). In their
efforts to create versions of Logo that support 3-
dimensional movement and graphics, others [1] have
noted some of the difficulties. The very dynamics and
structure of “Web space” raises additional issues for an
appropriate geometry; for example, there is no
guarantee that executing the same series of CrawLogo
movement commands from the same starting point at
different times will result in either the same path or the
same terminal-URI.

Turtle Goes Crawling. Certain aspects of
representing the Web geometrically raise problems that
are not present in traditional 2-dimensional Turtle
Geometry. To name only a few examples, consider that
in Turtle Geometry, headings of 0 and 360 are
equivalent; it is not clear to what extent it is
meaningful to think of Web space as being “closed” in
the same sense. Even more problematic, it is not clear
where “the screen” is located along the Web z-axis: is
it the “origin” – and if so, is such an origin best
conceived in terms of a polar coordinate system?
Similarly, the notion of “reversible operations” within
Crawlture Geometry is not straight-forward: whereas
moving up is unambiguous (e.g. moving up from any
particular URI will always lead to a parent URI)
moving down from the same parent URI can
potentially lead to a different URI (not to mention the
inherent ambiguity of down in the context of multiple
choices).

Crawlture Visualization. One issue that is clearly
problematic is how to visualize certain aspects of a
Crawlture’s state; for example, heading and position in
CrawLogo space. Some issues, such as the visual
representation of a rectangular browser’s orientation
on the screen, will not be difficult to solve. Others,
such as providing orientation or movement cues along
other dimensions, will be more challenging. In
particular, the current implementation does not try to
visualize a unified, 5-dimensioanl space; much of the
spatial movement and orientation of Crawltures is left
to the imagination of the programmer. As a related
visualization problem, it is not obvious what the
equivalent of “pen down” should be for CrawLogo.
Programmers in traditional Logo benefit from seeing

www.manaraa.com

the history of the pictures they try to make; it is not
clear how to provide similar, concrete feedback about
Crawlture histories. (It may be worth exploring
solutions similar to “salient still” visualizations [22]).

In addition to the control and visualization of
certain standard state-information, a future goal is to
increase the expressive potential in other ways. For
example, in traditional versions of Logo the
dimensionality of the Turtle is zero. In CrawLogo, the
programmer should be able to programmatically
control dimensionality – in all the dimensions of
Crawlture Geometry. As an example of application,
consider the potential to create Crawltures that can be
more like agents in different ways: they could
expand/shrink along different dimensions (“inhaling”
and “exhaling”), “feed on” other Crawltures, and
“hide” in different dimensions. In the current version
of CrawLogo it is possible for Crawltures to respond to
each other physically (Pong balls bouncing off of
paddles) to a limited extent. There are many interesting
possible extensions – but they clearly raise many of the
challenges involved with designing an appropriately
syntonic geometry.

It is currently possible to create a Crawlture that
moves from URI to URI and displays the page
contents. However, the current possibilities for
programmers to specify this movement is still quite
limited. Similarly, the current implementation provides
only a limited ability to specify data-types and
properties of Web content. It would be useful if
programmer- and user-interaction could be more
intelligent – Crawltures could have various ways of
representing meta-data, histories, and the like.

The major drawback of the current implementation
has to do with the 5-dimensional geometry – and
certain implementation choices based upon it. In a
way, the single largest future research problem is how
to develop a Crawlture Geometry of six dimensions –
one that is syntonic and visually empowering. One
possible solution is to represent the two, 3-dimensional
“halves” of Crawlture Geometry as separate screens:
with visual feedback from “screen-space” displayed in
one, and visual feedback from “URI-space” displayed
in the other. It would be interesting to see whether
programmers were able to “create a mental synthesis”
of the entire 6-dimensional space. An alternative is to
explore more esoteric techniques for visualizing spaces
with large numbers of dimensions.

Another major research topic involves the further
refinement of how to compute the number of degrees
in a URI node – and how to best correlate such a

solution with the programmer’s intuitions and standard
assumptions. It is troubling to have the classic Turtle
“right 90” mean different things at different times and
places in URI-space; it is not clear that there is an easy
alternative.

6 Conclusion

A long-term goal of this research is to empower
computational creativity of different kinds; in
particular the ability of end-users to program the Web
as an expressive medium. In addition to such success
criteria as ease-of-use, the evaluation metrics include
such things as the pleasure with which people use the
tools, the pride they take in their creations, and the
degree to which they are empowered in “the having
(and realizing) of their own wonderful ideas.” The
current version of CrawLogo still requires much work
to fulfill this goal, but the results to date are
encouraging.

7 References

1. Abelsson, H., diSessa, A. (1980). Turtle
Geometry: the computer as a medium for
exploring Mathematics. Cambridge: MIT Press.

2. Bamberger, J. (1979). Logo Music Project:
Experiments in musical perception and design.
A.I. Memo 523, M.I.T. Artificial Intelligence
Lab., Cambridge, Mass.

3. Begel, A.B. (1997). Bongo: A Kids' Programming
Environment for Creating Video Games on the
Web. MS Thesis. MIT.

4. Blackwell, A.F. (2002). What is programming? In
Proceedings of PPIG 2002, pp. 204-218.

5. Bruckman, A. (1997). MOOSE Crossing:
Construction, Community, and Learning in a
Networked Virtual World for Kids. PhD Thesis,
MIT.

6. Cockburn A. and Bryant A. (1997). Leogo: An
equal opportunity user interface for programming.
Journal of Visual Languages and Computing, 8:
601–619. Academic Press, New York, NY.

7. Cypher, A. Ed. (1993). Watch What I Do –
Programming by Demonstration. The MIT Press,
Cambridge, MA 02142, 1993.

8. Eisenberg, M. (1995). Programmable
Applications: Interpreter meets Interface. In
SIGCHI Bulletin, 27(2), pp.

9. Geisler, G. (1998). Making Information More
Accessible: A Survey of Information Visualization

www.manaraa.com

Applications and Techniques. URL:
http://www.ils.unc.edu/~geisg/info/infovis/paper.h
tml (2003-11-21).

10. Kahn, K. (1996). ToonTalk: An Animated
Programming Environment for Children. Journal
of Visual Languages and Computing, 7(2):197.

11. Kelleher, C. and Pausch, R. (2003). Lowering the
Barriers to Programming: a survey of
programming environments and languages for
novice programmers. Computer Science
Department, Carnegie Mellon University.
Pittsburgh, PA: CMU-CS-03-137.

12. Kerne, A. (2001). Collage Machine: Interest-
Driven Browsing through Streaming Collage. In
Proceedings of Cast01: Living in Mixed Realities.
(Bonn Germany, 2001), pp. 241-244.

13. Lau, T. and Weld, D.S. 1999. Programming by
Demonstration: An Inductive Learning
Formulation. In Proceedings of the International
Conference on Intelligent User Interfaces, 145–
152.

14. Lieberman, H., van Dyke, N. and Vivacqua, A.
(1999). Let's Browse: A Collaborative Web
Browsing Agent. In Proc. Intl. Conf. on Intelligent
User Interfaces, January 1999.

15. Miller, L. A. (1981). Natural Language
Programming: Styles, Strategies, and Contrasts.
IBM Systems Journal, 20(2), 184-215.

16. Miller, R. C. (2003). End-user Programming for
Web Users. End User Development Workshop,
Conference on Human Factors in Computer
Systems (CHI), April, 2003.

17. Montemayor, J., Druin, A., Farber, A., Simms, S.,
Churaman, W., and D'Armour, A. (2001).
Physical Programming: Designing Tools for
Children to Create Physical Interactive
Environments. CHI 2002, ACM Conference on
Human Factors in Computing Systems, CHI
Letters, 4(1), 299-306.

18. Nilsson, J. (2004). CrawLogo: An Experiment in
End-User Programming for Web-Enabled
Applications. Unpublished MSc Thesis.
Linkoping University, Linkoping, Sweden.

19. Papert, S. (1980). Mindstorms: Children,
Computers, and Powerful Ideas. (Second Edition,
1993). New York: Basic Books.

20. Resnick, M. 1996. StarLogo: An Environment for
Decentralized Modeling and Decentralized
Thinking. In Proceedings of the 1996 Conference
Companion on Human Factors in Computing
Systems.

21. Smith, D.C., Cypher, A. Schmucker, K. (1996).
Making Programming Easier for Children.
Interactions, v.3 n.5, p.58-67, Sept/Oct 1996.

22. Teodosio, L, Bender, W. (1993). Salient video stills:
content and context preserved, Proceedings of the
first ACM international conference on Multimedia,
p.39-46, August 02-06, Anaheim, California, United
States.

23. Theng, Y. L., Mohd-Nasir, N., Buchanan, G.,
Fields, B., Thimbleby, H. & Cassidy, N. (2001).
Dynamic Digital Libraries for Children. Joint
Conference on Digital Libraries pp 406–415.
ACM Press.

24. Travers, M. (1996). Programming with Agents:
New Metaphors for Thinking about Computation.
PhD Thesis, Massachusetts Institute of
Technology.

25. Wilensky, U. & Stroup, W. (2000). Networked
Gridlock: Students Enacting Complex Dynamic
Phenomena with the HubNet Architecture. The
Fourth Annual International Conference of the
Learning Sciences. Ann Arbor, MI. June 14 - 17,
2000.

